a. Chemical structures of three predominant flavonol aglycones |
Figure 1: Chemical structures of three predominant flavonol aglycones (a) and ginkgolic acids (b) in G. biloba |
Factors |
Levels |
||
-1 |
0 |
1 |
|
Pretreatment temperature (A) |
160 |
180 |
200 |
liquid-to-Solid ratio (B) |
50:1 |
55:1 |
60:1 |
Extraction temperature (C) |
80 |
90 |
100 |
Table 1: Factors and levels of the Box-Behnken Test Design
Figure 2: The rutin standard curve |
Figure 3: Experimental conditions and results of single factor analysis |
Figure 4: G. biloba leaves powders with or without different high temperature pretreatment: (a) without high temperature pretreatment, (b) 100 ℃, (c) 120 ℃, (d) 140 ℃, (e) 160 ℃, (f) 180 ℃, (g) 200 ℃ |
Number |
A (Pretreatment temperature) |
B (Liquid-to-solid ratio) |
C (Extraction temperature) |
Content (%) |
1 |
160 |
60 |
90 |
3.16902 |
2 |
200 |
55 |
100 |
3.12114 |
3 |
160 |
50 |
90 |
3.16902 |
4 |
180 |
55 |
90 |
3.47609 |
5 |
200 |
60 |
90 |
3.21945 |
6 |
180 |
55 |
90 |
3.45183 |
7 |
160 |
55 |
100 |
3.32606 |
8 |
200 |
50 |
90 |
2.91621 |
9 |
180 |
60 |
80 |
3.28010 |
10 |
160 |
55 |
80 |
3.11731 |
11 |
180 |
55 |
90 |
3.51631 |
12 |
180 |
50 |
100 |
3.35862 |
13 |
180 |
60 |
100 |
3.42757 |
14 |
180 |
50 |
80 |
3.12624 |
15 |
180 |
55 |
90 |
3.45055 |
16 |
200 |
55 |
80 |
3.07070 |
17 |
180 |
55 |
90 |
3.49716 |
Table 2: Response surface methodology design arrangement and the experimental results
Source |
Sum of Squares |
Df |
Mean Square |
F Value |
p-value Prob>F |
|
Model |
0.50 |
9 |
0.056 |
63.096 |
< 0.0001 |
significant |
A |
0.026 |
1 |
0.026 |
29.05 |
0.0010 |
|
B |
0.035 |
1 |
0.035 |
39.01 |
0.0004 |
|
C |
0.051 |
1 |
0.051 |
57.58 |
0.0001 |
|
AB |
0.023 |
1 |
0.023 |
25.93 |
0.0014 |
|
AC |
0.006 |
1 |
0.006 |
7.07 |
0.0325 |
|
BC |
0.002 |
1 |
0.002 |
2.03 |
0.1970 |
|
A2 |
0.262 |
1 |
0.262 |
295.98 |
< 0.0001 |
|
B2 |
0.051 |
1 |
0.051 |
57.79 |
0.0001 |
|
C2 |
0.021 |
1 |
0.021 |
23.23 |
0.0019 |
|
Residual |
0.006 |
7 |
0.001 |
|
|
|
Lack of Fit |
0.00 |
3 |
0.00 |
1.19 |
0.4186 |
not significant |
Pure Error |
0.00 |
4 |
0.00 |
|
|
|
Cor Total |
0.510 |
16 |
|
|
|
|
Table 3: Analysis of variance (ANOVA)
Figure 5: Interactive effects of pretreatment temperature, liquid-to-solid ratio, and extraction temperature on the content of G. biloba leaves flavonoids (as predicted by 3-D surfaces and contour plots) |
Figure 6: UV Chromatogram at 360nm of the 60% ethanol extracts |
Figure 7: The total ion current chromatogram of the 60% ethanol extracts |
Id# |
Compound |
m/z MS |
Adduct |
RT |
m/z MS/MS |
Reference |
1 |
3-O-[6-O-(α-L-rhamnosyl)-ß-D-glucosyl] myricetin |
625.1399 |
M-H |
5.570 |
316,271 |
23 |
2 |
3-O-[2-O-(6-O-p-coumaroyl)-β-D-glucosyl]-α-L- |
917.2349 |
M-H |
6.118 |
755, 609, 462, 300 |
23 |
3 |
3-O-[2-O, 6-O-bis (α-L-rhamnosyl)-β-D-glucosyl] |
739.2077 |
M-H |
6.243 |
284 |
23 |
4 |
3-O-[2-O, 6-O-bis (α-L-rhamnosyl)-β-D-glucosyl] |
769.2178 |
M-H |
6.360 |
314 |
23 |
5 |
3-O-[6-O- (α-L-rhamnosyl)-β-D-glucosyl] quercetin |
609.1441 |
M-H |
6.810 |
464, 300 |
23 |
6 |
3-O-[6-O- (α-L-rhamnosyl)-β-D-glucosyl]-3- |
639.1552 |
M-H |
7.077 |
331 |
23 |
7 |
3-O-(β-D-glucosyl] quercetin |
463.0000 |
M-H |
7.162 |
301 |
23 |
8 |
3-O-[6-O-(α-L-rhamnosyl)-β-D-glucosyl] |
593.1490 |
M-H |
7.823 |
285 |
23 |
9 |
kaempferol 3-O-β-D-glucoside |
447.0851 |
M-H |
8.162 |
284, 255 |
24 |
10 |
7-O-β-D-glucosyl apigenin |
431.0948 |
M-H |
8.529 |
268 |
23 |
11 |
quercetin 3-O-[2-O, 6-O-bis (α-L-rhamnosyl)-β-D- |
755.1827 |
M-H |
10.221 |
609, 300 |
25 |
12 |
Quercetin |
301.0337 |
M-H |
13.293 |
151, 107 |
23 |
13 |
Kaempferol |
285.0383 |
M-H |
18.509 |
227, 159, 117 |
23 |
14 |
Isorhamnetin |
315.0000 |
M-H |
19.447 |
300, 271, 151 |
23 |
Table 4: List of compounds of 60% ethanol fraction
a. Reducing Power Assay |
b. DPPH Radical Scavenging Activity Assay |
c. Scavenging of Hydrogen Peroxide Assay Figure 8: The antioxidant activities of flavonoids |
Figure S1: The mass spectrogram of Compound 1 |
Figure S2: The mass spectrogram of Compound 2 |
Figure S3: The mass spectrogram of Compound 3 |
Figure S4: The mass spectrogram of Compound 4 |
Figure S5: The mass spectrogram of Compound 5 |
Figure S6: The mass spectrogram of Compound 6 |
Figure S7: The mass spectrogram of Compound 7 |
Figure S8: The mass spectrogram of Compound 8 |
Figure S9: The mass spectrogram of Compound 9 |
Figure S10: The mass spectrogram of Compound 10 |
Figure S11: The mass spectrogram of Compound 11 |
Figure S12: The mass spectrogram of Compound 12 |
Figure S13: The mass spectrogram of Compound 13 |
Figure S14: The mass spectrogram of Compound 14 |